Propensity of undulatory swimmers, such as worms, to go against the flow.

نویسندگان

  • Jinzhou Yuan
  • David M Raizen
  • Haim H Bau
چکیده

The ability to orient oneself in response to environmental cues is crucial to the survival and function of diverse organisms. One such orientation behavior is the alignment of aquatic organisms with (negative rheotaxis) or against (positive rheotaxis) fluid current. The questions of whether low-Reynolds-number, undulatory swimmers, such as worms, rheotax and whether rheotaxis is a deliberate or an involuntary response to mechanical forces have been the subject of conflicting reports. To address these questions, we use Caenorhabditis elegans as a model undulatory swimmer and examine, in experiment and theory, the orientation of C. elegans in the presence of flow. We find that when close to a stationary surface the animal aligns itself against the direction of the flow. We elucidate for the first time to our knowledge the mechanisms of rheotaxis in worms and show that rheotaxis can be explained solely by mechanical forces and does not require sensory input or deliberate action. The interaction between the flow field induced by the swimmer and a nearby surface causes the swimmer to tilt toward the surface and the velocity gradient associated with the flow rotates the animal to face upstream. Fluid mechanical computer simulations faithfully mimic the behavior observed in experiments, supporting the notion that rheotaxis behavior can be fully explained by hydrodynamics. Our study highlights the important role of hydrodynamics in the behavior of small undulating swimmers and may assist in developing control strategies to affect the animals' life cycles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal morphokinematics for undulatory swimmers at intermediate Reynolds numbers

Undulatory locomotion is an archetypal mode of propulsion for natural swimmers across scales. Undulatory swimmers convert transverse body oscillations into forward velocity by a complex interplay between their flexural movements, morphological features and the fluid environment. Natural evolution has produced a wide range of morphokinematic examples of undulatory swimmers that often serve as in...

متن کامل

Vortex re-capturing and kinematics in human underwater undulatory swimming.

To maximize swimming speed athletes copy fish undulatory swimming during the underwater period after start and turn. The anatomical limitations may lead to deviations and may enforce compensating strategies. This has been investigated by analyzing the kinematics of two national female swimmers while swimming in a still water pool. Additionally, the flow around and behind the swimmers was measur...

متن کامل

A hydrodynamic mechanism for attraction of undulatory microswimmers to surfaces (bordertaxis).

Although small nematodes significantly impact human and animal health, agriculture, and ecology, little is known about the role of hydrodynamics in their life cycles. Using the nematode Caenorhabditis elegans as a model undulatory microswimmer, we have observed that animals are attracted to and swim along surfaces. The attraction to surfaces does not require mechanosensory neuron function. In d...

متن کامل

The role of body flexibility in stroke enhancements for finite-length undulatory swimmers in viscoelastic fluids

The role of passive body dynamics on the kinematics of swimming micro-organisms in complex fluids is investigated. Asymptotic analysis of small amplitude motions of a finitelength undulatory swimmer in a Stokes-Oldroyd-B fluid is used to predict shape changes that result as body elasticity and fluid elasticity are varied. Results from the analysis are compared with numerical simulations, and th...

متن کامل

Separability of drag and thrust in undulatory animals and machines

For nearly a century, researchers have tried to understand the swimming of aquatic animals in terms of a balance between the forward thrust from swimming movements and drag on the body. Prior approaches have failed to provide a separation of these two forces for undulatory swimmers such as lamprey and eels, where most parts of the body are simultaneously generating drag and thrust. We nonethele...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 12  شماره 

صفحات  -

تاریخ انتشار 2015